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1. INTRODUCTION

A time-honored method of smoothing equally spaced observations (such
as time series. or human mortality rates by age) to remove or reduce
unwanted irregularities is the moving weighted average (MWA). Here we
shall consider only symmetrical averages, which can be expressed in the
form [I5[

CiY x i (C j = cJ ( l. I )

where Yx is the observed value corresponding to the (integral) argument x, u 1

is the corresponding smoothed value, 111 is a given positive integer. and the
coefficients c j are given real quantities satisfying

111

'\'

111

This smoothing method has the disadvantage that it does not produce
smoothed values for the first 171 and the last 111 observations, unless the
original data set can be extended by 171 observations at each end. In the first
paper of this series [91. I suggested a natural method of extending the
smoothing to the extremities of the data. in which the treatment of the obser
vations in the ""tails" of the data set is an integral part of an overall matrix
vector operation and not something extra grafted on at the ends. In fact.

u = Gy. (1.2 )

where y is the vector of observed values. u is the corresponding vector of
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smoothed values. and G is a square matrix uniquely determined by the
following five properties.

(1) The components of lI. except the first m and the last m. are merely
the smoothed values that would be obtained by application of the given
MWA.

(2) G (gij) of order N is a band matrix such that gil 0 for

Ii -)1> m. and N> 2m.

(3) Let (1.1) be exact for polynomials of degree 2s I. but not. in
general. for those of higher degree. (Note that. because of the symmetry of
(1.1). the degree of exactness must be odd.) Also let K denote the matrix of
N -- s rows and N columns that transforms a vector II into the vector Ku of
sth finite differences of the components of ll. Then. G is of the form

G=/--K1DK

for some D of order N - s.

(4) D is nonsingular and has a Toeplitz inverse.

(5) If D- I = (iij)' with Ii) = Ii i' then the series

I,z'

( 1.3)

converges in some part of the complex plane. (Note that it was shown in

III 1that I,. depends only on v and is independent of N.)
The existence and uniqueness of G 19. Theorem 3.11 depend on certain

(very mild) hypotheses concerning the given MWA (1.1). Following the
customary notation of the calculus of finite differences. we define E and 0 by

EI(x)=I(x+ I). (If(x) = I(.v "T- ~) - /(x n. ( 1.4)

Then (1.1) can be written in the form

where

m ,\

( I. 5 )

q(E) c= '\'

m! \

(1.6 )

with q i = qj' and we impose the two conditions that qo > 0 and that q(z)

have no zero on the unit circle of the complex plane. The effect of these
hypotheses is discussed in 191. where the matrix-vector formulation is also
shown to be equivalent to a certain extrapolation algorithm. In 1101 efficient
numerical procedures are described.
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It is the purpose of this paper to show that if the given MW A is further

restricted, the unique G determined by the five properties listed has a certain

stability property and certain optimal properties.

2. TRENCH MATRICES

A matrix L = Vij)!'.; II will be called strictly banded if {ij = 0 for j - i > h
and for i - j > k, where hand k are nonnegative integers and h + k (. N.
Note that the numbering of rows and columns is started with 0 rather than I.
Let

\

LJI:) = \ ' (;x;
I II

be the generating function of the elements of the ith row of L. In 18 j, I
defined a Trench matrix as a strictly banded matrix such that

where

LJI:)=xiA(x) \' b"x "
" II

\' i

=xiB(I/x) \' x'
" ()

(O(.i<k)

(k(.i(.N h)

(N - h < i (. N), (2.1 )

II

A(x) = \'
/' 0

"a"x,
k

B(x) = \' b"x"
" II

(2.2 )

are polynomials with real or complex coefficients (according as L is real or

complex) and allbll * O.
This form was previously given (though the name "Trench matrix" was

not used) in the joint paper III I. and the properties of such matrices were
studied. They were studied further in 17, 8 j, and in 191 the results were

applied to smoothing matrices G of the form (1.3). In [I I I it was shown that
a strictly banded matrix L has a Toeplitz inverse if and only if it is a
nonsingular Trench matrix, and further that the Trench matrix (2.1) is
nonsingular if and only if A(x) and B(x) have no common zero. For
convenience the following results based on [7, 91 are stated as lemmas.

LEMMA 2. I. Let a given symmetrical MWA of 2m + I terms be exact
lor the degree 2s - I (s (. m), let q(x) defined by (1.5) and (1.6) have no
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zeros on the unit circle, and let q() > O. Then there exist at least one and at
most a finite number not exceeding 2m 'of polynomials A (x) of degree m - s
H'ith real coefficients such that

q(x)=A(x)A(1 x). (2.3 )

LEMMA 2.2. Let a given symmetrical MW A satr~l.i' the hypotheses Cit
Lemma 2.1 and let G be real and symmetric Cilorder at least 2m + I and
have properties (I )-( 4) of Section I. Then G = I F, H'here F is the
symmetric Trench matrix characterized by two identical polynomials A(x)
and B(x) both equal to (x- I)' A(x), where A(x) has real coefficients and
satisfies (2.3),

Of the five properties utilized in Section I to define the matrix G uniquely.
property (I) is no more than a restatement of the problem to be solved. while
property (2) requires. in effect, that the overall smoothing procedure be a
"local" one. Properties (3)-(5) were motivated in 191 by the fact they are
also properties of the well-known Whittaker smoothing method (for a
description of the latter see 19, 51l. Of these property (5) may appear to
some readers more artificial and less compelling than the others. It IS

therefore of interest to know that it can be replaced by certain alternati ve
conditions. Two of these are described in the following two sections.

It follows from Lemmas 2.1 and 2.2 that, in general, properties (I H 4) of
Section I do not uniquely determine G but restrict it to a finite class. The
various matrices of the class differ. however. only in the square submatrices
of order m in the upper left and lower right corners. Moreover. we shall find
it convenient. in Theorems 3.1 and 5.1, to introduce the additional
hypothesis that G be symmetric. The reader will note that the live properties
of Section I do not explicitly mention symmetry of G; rather this comes out
as a consequence, and property (5) plays an essential role (see proof of
Theorem 3.1 of 191). I conjecture that the symmetry of G is not a necessary
hypothesis. but I have not found satisfactory proofs without it. It will be
noted that. in consequence of the first four properties, symmetry obtains
everywhere except possibly in the two corner submatrices referred to (sec
191 ),

It may be mentioned. in fact that there are cogent reasons for thinking
that G should be symmetric. A square matrix is called persymmetric if it is
symmetric about its secondary diagonal. It is called centrosymmetric if it is
symmetric about the center of the matrix: thus G = (c,) of order N is
centrosymmetric if Cu = c, j + 1.\ i j I for all (i.}). Now, it is easily seen that
of the three properties of symmetry. persymmetry. and centrosymmetry. any
two imply the third. If G has properties (I )-(4). it is necessarily persyrn
metric, because G = I-F. where F is a Trench matrix. and every Trench
matrix is persymmetric 1111. Therefore. if G is not symmetric, it is nut
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centrosymmetric. Now. if G is not centrosymmetric. this means that

reversing the order of the observed values (without changing their
magnitude) would not merely reverse the order of the smoothed values. but

would cause different numerical values to be obtained. For example. the
elements of the bottom row row of G would not be those of the top row in
reverse order. The formula for smoothing the last observation would not be
the mirror image of the one for smoothing the first observation. but would be
a different formula. This would seem to be an undesirable characteristic of
the smoothing process.

3. OPTIMAL PROPERTY OF THE EXTREME Rows OF G

The atypical rows of G (i.e.. the first m and the last m) may be regarded

as representing special unsymmetrical smoothing formulas employed near
the ends of the data to supplement the main symmetrical formula used
elsewhere. Under certain statistical hypotheses concerning the observations

subjected to smoothing (see. e.g.• [I. 10 I). the Euclidean length of each row
of G may be regarded as the ratio of reduction in the standard deviation of
error of the particular observation that results from the smoothing operation.

It would therefore be desirable to choose from the finite class of possible
matrices G one for which the Euclidean length of the atypical rows is small.
In particular. Tables 4-6 of [10 I suggest that there is a strong tendency for
the length of the top and bottom rows to become large. Because the bottom
row contains the same elements as the top row but in reverse order. it is
sufficient to consider the top row.

THEOREM 3.1. Let a given symmetrical MWA salisf), the hypotheses of
Lemma 2.1 and also Co > - 1. where Co is defined by (1. I). Let G be
symmetric and have properties (I )-(4) of Section 1. Then the Euclidean
length of the top roll' of G is smallest when G has property (5).

Proof Let G be symmetric and have properties (I }-(4). Since qo > O. it
follows from Lemma 2.2 that G = I-F. where F is the (singular) Trench
matrix characterized by the two identical polynomials

A(x) = B(x) = (x - I)' A(x).

and A(x) satisfies (2.3). Because of the symmetry of the coefficients qj of
( 1.6) and the fact that q(x) has no zeros on the unit circle. the polynomial
x'" 'q(x) of degree 2m - 2s has m - s zeros inside the unit circlt: and an
equal number outside. which are the reciprocals of those inside. The different
possible choices of A (x) correspond to the different ways of assigning the
2m -- 2s zeros to two equal subsets in such a way that a given zero and its
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reciprocal are not in the same subset. Conjugate pairs of complex zeros must
be assigned to the same subset.

Let

11/
A(x) == \ ~ ajx).

i ()

Then, (1.5) can be written in the form

(3.1 )

and so, by (1.1). Co = I -- S. wherc

, \'"5= _ a i .
i ()

Therefore,

S= I CO' (3.2 )

By (2.1), the nonzero elements of the top row of G are 1·- a,;. --all aI •

-ana, .... , -anall/' If R n denotes the Euclidean length, we have

R~ = I _.. 2a~ + al;5 = I -a~(2 - S).

If 1'\,1', ..... I'll/ \ are the zeros of A(x),

11/
A(x) = all/(x 1)\ II (x ri )·

I \

If

m .\

p= (·1)11/ I II r
i

•

i I

we have. by (3.1) and (3.4),

(3.3 )

(3.4 )

(3.5 )

and therefore,

a~=cII/P'

[n view of (3.2) and (3.6). (3.3) becomes

(3.6 )
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In this relation Co and cm are given; P is the only variable. Moreover,
em P = GG is positive, and I + Co is positive since Co > -I by hypothesis.
Therefore RG is smallest when IPI is largest, and by (3.5) this is clearly the
case when A (x) is chosen so that its m - s zeros are the zeros of q(x) that
are outside the unit circle. But by Theorem 3.1 of [91, this choice of A (x) is
equivalent to property (5). This completes the proof.

I conjecture that the hypothesis that G be symmetric is not essential.
However. dropping it might necessitate stronger conditions on the MW A.

4. CHARACTERISTIC FUNCTION OF AN MWA

Schoenberg 115 I defined the characteristic function of the MW A (1.1) as

III

I/J(t) = \ ' cic;;'.
III

(4.1 )

For a symmetrical MWA this is a real function of the real variable t. and
can be expressed in the alternative form

m

¢(t)= \' cicosjl.
III

It is periodic with period 27[ and equal to unity for t = 27[n for all integers n.
The effect of MWA's in eliminating or reducing certain waves is well

known (e.g., [4, 121). If the input to the smoothing process is a sine wave.
which can be represented in the form

.r, = C cos(rx + h),

it can be shown by simple algebraic manipulation that

U, = y,qJ(2rr/w).

(4.2)

where w = 27[/1' is the period of J'x' Thus. if ¢(27[/w) = 0, the wave is
annihilated by the smoothing process; the amplitude is severely reduced if it
is closc to zero. Thus MWA smoothing is related to the "filtering" processes
considered by Wiener 1191 and others.

Schoenberg [151 defined a smoothing formula as an MWA whose charac
teritsic function I/J(t) satisfies the condition

1¢(t)I~ I (4.3 )

for all t. Thomee 1181 calls (4.3) "von Neumann's condition" without.
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however, citing any specific publication of von Neumann. Later Schoenberg
116, 171 suggested the stronger condition

10(1)1 < I (0 < I < 271). (4.4 )

LanclOs (see 1171) pointed out that (4.4) is obtained by requiring that every
simple vibration (4.2) be diminished in amplitude by the transformation
(1. I ).

The main theorem (Theorem 3.1) of 191 includes the hypothesis that the
given MW A is such that q" > O. The following theorem shows that this
inequality follows from (4.3).

THEOREM 4.1. Lei a gil'en symmelrical MW A exaci for Ihe degree
2s - I be such Ihal q(x) defined by (1.5) has no zeros on Ihe unil circle, and
lei ils characlerislic function sali~fr (4.3). Then q" > O.

Proo.t: Consider the real function lj/(I) = I I[J(I) and note that (4.3) is
equivalent to

O~lj/(t)~2 (4.5)

for alII. From (1.4). (1.5), and (4.1) it follows that

lj/(I) = (-I)' (2i sin tt)" q(e il
) = (4 sin' tl )' q(e if

),

and therefore (4.5) implies that q(e il
) is nonnegative for 0 < I < 271. In fact. it

is positive. since q(x) has no zeros on the unit circle, and by continuity it is
positive for 1=0 as well. In other words. q( I) > O. Now let the polynomials
A(x) and B(x) be chosen so that q(x) = A (x) B( IIx) and the zeros of B( IIx)
are the reciprocals of those of A (x). This is always possible because of the
symmetry of the coefficients of q(x). Moreover. the coefficients in these
polynomials can be normalized, as in the proof of Theorem 3.1 of 191. so
that

Then (4.6) and (2.2) give

and moreover.

q(x) =±A(x) A (1/x).

III \

q" = ± \. a;,
i ()

q( I) = ±IA(I )1'.

(4.6)

(4.7)

Since we have shown that q( 1) is positive, the positive sign holds throughout.
and (4.7) gives q" > O. as required. since a" c/c O.
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5. THE STABILITY THEOREM

51

The matrix-vector approach to smoothing described in 191 and
summarized above suggests an alternative to Schoenberg's criterion (4.3) or
(4.4) for a smoothing formula. If the matrix G of (1.2) is defined in some
unique way for all orders N greater than a certain minimum. and is therefore
denoted by G,. we call it stable if the limit

G~ = lim G'~
!/-+(

exists for all N. Schoenberg 117. Footnote 31 suggested a relationship
between (4.3) and the conditions for the existence of the infinite power of a
matrix 114. 31. but he did not elaborate the connection. In the theorem which
[allows we attempt to do so.

We summarize briefly some results of 181 that will be needed in the proof.
If the polynomials that characterize a real symmetric Trench matrix II are
A (x) and B(x) of degree d. the coefficients can be normalized so that either
B(x) = A (x) or B(x) = -A (x). If the minus sign holds. one can consider the
symmetric Trench matrix -H. It is sufficient. therefore. to consider the case
in which B(x) = A (x).

Let A (x) be given and consider the family of symmetric matrices H \ or
order N 3 2d + I characterized by A (x) and B(x) = A (x). Let

where ,11 is a positive constant. and let

h(x) =A(x)A(I/x).

Then it is shown that h(x) is real and nonnegative on the unit circle, and has
a maximum thereon. which we denote by M. while Corollary I of 181 states
that the family j G, I is stable if and only if

,11 ~ 21M

and no zero of A (x) is inside the unit circle unless it is also a zero of A (I /x).
A particular application of Lemma I of 181 yields the result that if D is a
Trench matrix characterized by the polynomials A (x) and B(x), then K IDK

(with K defined as in property (3) of Section I of the paper) is a (singular)
Trench matrix characterized by the polynomials A(x) = (x - 1)' A (x) and
B(x) = (x - 1)' B(x).

THEOREM 5.1. Let a symmetrical MWA (1.1) be given and let the
associated smoothing matrix G, for all N 32m + 1 be symmetric and haec
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properties (I )-(4) of Section I. Then the fami(l' IG, f is stable iF and on(\' U·
(4.3) holds and the polynomial A (x) associated with the matrix D of Propert\'
(3) has no zero inside the unit circle.

Proof From the hypotheses stated in the first sentence of the theorem we
can deduce certain properties of the matrices F == I - G and D. First we note
that the hypotheses of the present theorem differ slightly from those of
Theorem 3.1 of 191. We have added the hypothesis that G is symmetric. and
have omitted the restrictions on q(x). However. the reader should note
carefully that the latter omission is occasioned only by the fact that these
restrictions are implied by the symmetry of G in conjunction with other
hypotheses. The symmetry of G implies that of F. As the rows of K arc
linearly independent. it has full row rank and therefore has a left inverse. say
J 12. Lemma 1.21. Therefore.

and consequently D is symmetric.
By property (2). [) is strictly banded. and it follows from property (4) (see

II I I) that [) is a nonsingular Trench matrix. If it is characterized by the two
polynomials A (x) and B(x) of degree m s. then

q(x) = A(x) B( l/x).

as in the uniqueness proof of Theorem 3.1 of 191. As D is real and
symmetric. the coefficients in these polynomials are real and can be
normalized so that

B(x) = ±A(x). (5.1 )

As we have omitted the hypothesis that qo > O. some ambiguity remains for
the time being about the sign of the right member of (5.1). and we have

q(x) tA (x) A (I x). (5.2 )

Now. the symmetry and nonsingularity of D and the requirement that
A (x) have real coefficients imply that q(x) has no zeros on the unit circle. As
we have seen. symmetry of D implies (5.2). and nonsingularity implies 1111
that A(x) and A(l/x) have no common zero. Now. if q(x) has a zero on the
unit circle. say X o ' then X o I is also on the unit circle. so that A (x) must have
a zero on the unit circle: call it p. Then p I is a zero of A ( I/x). and /j is a
zero of A (x). since A (x) has real coefficients. But in this case /j == pi:

therefore A(x) and A(I/x) have a common lero. a contradiction. Thus the
supposition that q(x) has a zero on the unit circle is false.

Now. suppose that (4.3) holds and A (x) has no zeros inside the unit circle.
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Then it follows from the proof of Theorem 4.1 that the positive sign holds in
(4.6) and (4.7), and therefore in (5.2). By Lemma I of [81. F is a singular
Trench matrix characterized by the polynomials

Let

Then.

A(x) = B(x) = (x - I)' A(x).

I(x)=A(x)B(I/x)=(x 'i2 X 1')2'q(X).

(5.3 )

(5.4 )

Let iH denote the maximum value of I(x) on the unit circle. Then by (4.5)

AI ~ 2. or

I ~ 2/A1. (5.5 )

Consequently. by Corollary I of 181. the family lG,f is stable.
Conversely. suppose that the family {G, f is stable, in addition to the

hypotheses in the first sentence of the theorem. Since G, is symmetric. its
eigenvalues are real. and stability implies 114.31 that all its eigenvalues are
in the half-open interval (--I. I I. In other words. all the eigenvalues of F \ are
in 10. 2) for all N. Now, if l' is an arbitrary column vector of real elements. it
is well known that the minimum value of the Rayleigh quotient /.IFI'!I' II' is
the (algebraically) smallest eigenvalue of F. Suppose the minus sign holds in
(5.1) and let l' be the unit vector with I as its first element and all the other
elements O. By (5.3) the constant term of A(x) is (-I)' Go. and the Rayleigh
quotient is -~G~, which is negative since Go * 0 by the definition of a Trench
matrix. Thus, F has a negative eigenvalue. in contradiction to the statement
that all its eigenvalues are in 10.2). Therefore the supposition that the minus
sign holds in (5.1) is false.

Since the positive sign holds in (5. J l, F belongs to the class of matrices to
which Corollary I of [81 applies. Thus stability of the family \G\ i implies
that A (x) has no zero inside the unit circle unless it is also a zero of A ( 1/x).

But a common zero of A(x) and A(I/x) would imply that D is singular.
which would contradict property (4). Therefore A (x) has no zero inside the
unit circle. Stability implies further that (5.5) holds. with I'v1 defined as
before. and this implies in turn that AI ~ 2. which, in view of (5.4). is
tantamount to (4.5) and therefore to (4.3). This completes the proof.

It is easily verified that G f • when it exists, is the orthogonal projector on
the eigenspace of G associated with the eigenvalue I. that is. the space of N
vectors whose components are successive equally spaced ordinates of
polynomials of degree s I or less.
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I conjecture that in Theorem 5. I the hypothesis of symmetry of G could
be replaced by mild restrictions on the given MW A. While symmetry of the
main part of G follows from the symmetry of the coefficients in the main
formula and properties (I )-(4). the special corner submatrices arc not
symmetric unless A (x) is is chosen so that B(x) c= A (x). I have not been able
to find a stable family 1G\ f with unsymmetric corners. and I doubt that one
exists. However. the proof of stability in [81 makes extensive use of the well

known relation between Rayleigh quotients and eigenvalues that holds only
for Hermitian (including symmetric) matrices. Extension of the result to

smoothing matrices with unsymmetric corners would require a different
method of proof. which I have not succeeded in finding.

6. S~OOTHING FORMULAS IN TIlE STRICT SENSE AND

ANOTHER OPTI~AI. PROPERTY

Under certain conditions the smoothing procedure discussed here can be

shown to minimize a certain "loss function" analogous to the Whittaker
criterion (see 191). In a slightly more general form of the Whittaker
smoothing method 151 one minimizes the sum of the weighted squares of the
departures of the smoothed values from the observed values plus a specified
quadratic form in the sth differences of the smoothed values. In matrix terms
this is

(11 - .l')' W(1I - y) -+- (K1I)' HK1I.

where IV is a positive diagonal matrix and H is a given posItIve definite

matrix of order N - s. This reduces to the usual Whittaker criterion when H
is a scalar matrix g1. We shall consider here only the "unweighted" case
W = 1. Minimization of the "Ioss function" then leads to the equation

(I -+ K I H K) 11 = y.

which has a unique solution for 11 since 1 +- KIHK is positive definite. In 151
I showed that this smoothing method has the interesting property that if
roughness (opposite of smoothness) is measured by the term (K11)' H K1I.

smoothness is always increased by the graduation. By Theorem 5.22 of 1131.

(I -+- K IHK) I = I K 1 (H I + K K I) I K.

The last expression is of the form (1.3) and suggests that the use of an MW A
with the natural extension of Section 1 might be regarded as a generalized
Whittaker smoothing process if

[) = (11 I + KK 1
) I
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Solving for H gives

H=(D I-KK I
) I.

55

(6.1 )

We are led to inquire, therefore, under what conditions an MW A is such that
the right member of (6.1) for the natural extension is positive definite for all
N. We note in passing that

H I =D '-KK I

is a Toeplitz matrix.
Schoenberg liS, p. 531 remarks that it is desirable for an efficient

smoothing formula, one that achieves adequate smoothness without
producing unnecessarily large departures from the observed values. to have
its characteristic function satisfy

o~ 6(1) ~ I (6.2 )

for all t. a stronger condition than (4.3) or (4.4). This remark seems to have
been little noted in the years since its publication. We shall call an MW A a
smoothing formula in the strict sense if its characteristic function satisfies
(6.2).

LEMMA 6.1. Under the natural extension of a given symmetrical MW A.
D 1 -- KK l is nonsingular if and only if G is nonsingular. and H defined b.\'
(6.1) is positive definite if and only if G is positive definite.

Proof If

G=/-KIDK

as In (1.3). then by Noble's theorem

G I = / + KJ(D I _ K K J ) I K.

(6.3 )

(6.4 )

provided G and Dare nonsingular. Under the natural extension. D is always
nonsingular by property (4). In the proof of Noble's theorem, the
nonsingularity of D- 1

- KK J is shown to follow from that of G and D. On
the other hand, if D 1 - KKI is nonsingular, multiplication of the right
members of (6.3) and (6.4) gives the identity. This proves the first statement
of the lemma.

Now let H be positive definite. Then, by (6.4) and (6.1).

G 1 = / + KIHK.
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If I' is an arbitrary nonzero real vector.

l"C II' = 1"1' + (KI')' HKl·. (h.5 )

The second term of the right member of (6.5) is nonnegative. SInce H is
positive definite. and the first term is positive. It follows that G I. and
therefore G, is positive definite.

Conversely. let G be positive definite. Applying Noble's theorem to (6.3)

gIves

J/=D+ DK(/ K'DK) I K'D=[)+DKG IK'D.

Now. we note that under the natural extension D is positive definite [8.
Theorem 1[. since all the zeros of A(x) are outside the unit circle. Thus, the
same argument used previously shows that lJHI' > 0 for every nonzero real
vector 1'. and so l-f is positive definite. This completes the proof.

THEOREM 6.2. Under Ihe nalural eXlension of a gil'en symmelrical
MWA, l-f is positil'e definile for all N (t and 011(1' if (/)(1) satisfies (6.2).

Proof By Lemma 6. L H is positive definite if and only if G is positive
definite: therefore we need only consider the positive definiteness of G. We
recall that G 'CC I F, where F is a singular. symmetric Trench matrix
charcterized by two identical polynomials equal to ,4(x). Since all the zeros
of ,4 (x). with the exception of + L are outside the unit circle. F is positive
semidefinite 18, Theorem I I. and if

then

is nonnegative for all I. Let /\.1 denote the maximum of ~/(l).

Now. let 6(1) satisfy (6.2). Since di(i) = 1- w(i). it follows that

o~ V/(i) ~ I (6.6 )

for all I. Therefore Al ~ L and it follows 18, Theorem 2 i that for all N all
eigenvalues of F are nonnegative and less than unity. Since the eigenvalues of
G are I minus those of F. all of the former are positive for all N, and
therefore G is positive definite for all iV.

Conversely. let G be positive definite for all N. Then all its eigenvalues are
positive for all N. and consequently those of F arc less than unity (but not
less than zero. since F is positive semidefinite). Since M is the limit of the
largest eigenvalue as N becomes infinite 18. Theorem 2[. /I.f ~ I. Therefore
(6.6) holds. and it is equivalent to (6.2). This completes the proof.



\10VING-WEIGHTED-AVERAGE SMOOTHlr\G 57

It is easy to construct an MW A that is a smoothing formula in the strict
sense. However, none of the weighted averages in common use fall in this
class. As a practical matter, the smoothing effected by such formulas is
likely to be too "gentle." In particular, using properties of Jacobi
polynomials, I have shown in 161 that the characteristic functions of all the
minimum-R, averages commonly used by actuaries and economic
statisticians (see [101) assume negative values in (0,2n). Thus no such
formula is a smoothing formula in the strict sense.

There is, however, one family of moving averages, mentioned in the
literature but not in general use, that are smoothing formulas in the strict
sense. This is the limiting case of the minimum-R, formulas as 5 approaches
infinity 161. In finite-difference form, the minimum-R f formula of 2111 -+ I
terms, exact for the degree 25 I. IS

II, =U 2
(1I1., ,

, \ .
\1 \ - . ('111 - 5 -+J) -'I·

St _(-4)' a-I',
i " j, . .,

where the operator .u is defined by

.uf(x) = ~ [/(x -+ ~) +/(x - ~) I.

so that .u' = -+ 1(j2. The characteristic function is

\ I ' ..
\ '( 11"(111-5+ / ) .,.\di(t)=(cos"t),111 ,. ~ .' sm-',I,

I ", J

which is nonnegative in 0 < I < 2n, with a single zero of multiplicity
2(111 - 5 + I) at 1= n.

It may be mentioned that. in the case where di(l) assumes some negative
values (and G and If are nonsingular). though the loss function does not
have an extremum, the natural extension does correspond to a saddle point
of that function.
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